What do we know about quenching?

But, Really: What do we know?

- "Jets" are quenched, but what is the mechanism?
 - Play devil's advocate: if sQGP is correct hypothesis, should we expect perturbative energy loss to apply?
 - Can we <u>prove</u> that perturbative collisional + radiative energy loss is dominant in the RHIC data?
 - If not, what data/measurements would be required?
 - ⇒e.g. Horowitz and Gyulassy
- Suppose we can determine that energy loss is truly perturbative, role of collisional? (e.g.)
 - Can we resolve the theoretical disagreements?
 - ⇒Can we stop talking past each other?
 - Do we understand why results differ?
 - Can experimental data help?
 - ⇒Applies to any issue that we face

Urgent need for progress

- Success of RHIC program has created interest in the field. LHC will also generate interest.
- But, in 8 years of RHIC program, not much progress in really understanding the physics.
 - This pace cannot continue.
 - We must follow up the initial successes at RHIC with real understanding – or interest in field will disappear.
- Need to figure out which questions are important and make concerted attack on them.
 - Requires a coherent effort:
 - **⇒Among theorists**
 - ⇒Between theorists and experimentalists

Bootstrapping our way to jet tomography

Tomography (our goal):

 studying an unknown medium with well understood & calibrated probe.

Unfortunately, this is not what we are doing

- We have assumptions/calculations of medium properties.
- And incomplete understanding of how our probe(s) interact with that medium.
 - ⇒We must simultaneously test descriptions of the medium and our understanding of energy loss.
 - ⇒Only when we have demonstrated that we have

From QM2008 Talk: Conclusions

- We desperately need a coherent theory+expt. effor
 - To address issues with energy loss models
 - To test models against consistent set of realistic geometries
 - Examples for how to do this: MRST & CTEQ
 - ⇒Only then can we really bootstrap our way to tomography
- It's time to get past/get over fragility
 - Yes, we know already!
 - But R_{AA}(p_T, A, N_{part}, φ-Ψ) absolutely necessary for
- It's too early to try to determine to 10, 20, 30%
 - When there are much larger theoretical uncertainties.
 - We experimentalists should be using (and refining our) data to help resolve those theoretical uncertainties.

TECHQM: Theory ⇒ Experiment

- Enormous effort within experiments making measurements at high p_T.
 - Clearly, not all of these will have same impact on physics extracted from data.
 - Allocation of effort by experiments almost certainly not optimized to most important problems.
 - ⇒Since currently there is no clear agreement on what the important problems are.
 - Deluge of results has a down-side "noise"
- With LHC start-up, there will be even more data.
 - Jet measurements will explode the phase space of experimental measurements of quenching.
- TECHQM feedback to the experiments on

TECHQM: Theory ⇒ Experiment (2)

- There is a strong desire on the part of experimentalists to understand the consequences of their measurements.
 - In a vacuum ideas, good and bad will be spontaneously generated.
- Complicated, subtle theoretical arguments often get lost or are often lost in the sauce.
- TECHQM should:
 - Serve the role of incorporating experimentalists that want to help understand results into effort.
 - Help develoe deeper understanding of theoretical issues by participating experimentalists.
 - help crystalize theoretical understanding for wider understanding by experimental community.

TECHQM: Experiment Interface (2)

- But, theory community also needs to listen to experiments on what/how well measurements can be done.
 - e.g. fragility argument has spurred interest at RHIC in di-hadron correlations.
 - But, for same integrated luminosity, correlation measurements much poorer, less control over systematic errors.
 - Can other measurements also address many of the same questions?
 - ⇒Theory experiment interaction a two-way street.
- Experimental community has extensive experience with numerical, computational techniques that will be valuable to TECHQM.